Flink读取Kafka写入Paimon

8 次阅读 预计阅读时间: 6 分钟


相关资源

Flink SQL

-- 1)注册 Paimon 源nCREATE CATALOG paimon_hivenWITHn  (n    'type' = 'paimon',n    'warehouse' = 'hdfs://xxxxx/paimon',n    'metastore' = 'hive',n    'hive-conf-dir' = '/xxxxx/conf',n    'uri' = 'thrift://域名1:9083,thrift://域名2:9083'n  );nn-- 2)声明 Kafka 源ncreate table kafkaSource (n	`_timestamp` string,n	`name` string,n	`age` string,n	`id` stringn) with (n	'connector' = 'kafka',n	'format' = 'json',n	'topic' = 'topic1234',n	'properties.bootstrap.servers' = '你的Kafka Brokers',n	'properties.group.id' = 'kafka-to-paimon',n	'scan.startup.mode' = 'latest-offset'n);nn-- 3)读取+写入PaimonnINSERT INTO paimon_hive.paimon.odm_kafka_lognSELECTn	name AS `name`,n	age AS `age`,n	id AS `id`n	FROM_UNIXTIME(CAST(CAST(`_timestamp` AS BIGINT) / 1000 AS BIGINT), 'yyyyMMdd') AS `day`nFROM kafkaSource;

Flink Table (Java)

Maven依赖

<!-- 添加Flink依赖-->n<dependency>n	<groupId>org.apache.flink</groupId>n	<artifactId>flink-streaming-java</artifactId>n	<version>1.15.0</version>n</dependency>n<dependency>n	<groupId>org.apache.flink</groupId>n	<artifactId>flink-java</artifactId>n	<version>1.15.0</version>n</dependency>n<dependency>n	<groupId>org.apache.flink</groupId>n	<artifactId>flink-connector-kafka</artifactId>n	<version>1.15.0</version>n</dependency>n<!-- flink table相关类 -->n<dependency>n	<groupId>org.apache.flink</groupId>n	<artifactId>flink-table-api-java-bridge</artifactId>n	<version>1.15.0</version>n</dependency>nn<dependency>n	<groupId>org.apache.flink</groupId>n	<artifactId>flink-table-common</artifactId>n	<version>1.15.0</version>n</dependency>n<!-- 添加Paimon依赖-->n<dependency>n	<groupId>org.apache.paimon</groupId>n	<artifactId>paimon-flink-1.15</artifactId>n	<version>0.5.0-incubating</version>n</dependency>

Job类

package job;nnimport com.google.protobuf.ByteString;nimport function.GalaxyToPaimonFlatMap;nimport org.apache.flink.api.common.eventtime.WatermarkStrategy;nimport org.apache.flink.api.common.restartstrategy.RestartStrategies;nimport org.apache.flink.api.common.typeinfo.Types;nimport org.apache.flink.api.java.utils.ParameterTool;nimport org.apache.flink.connector.kafka.source.KafkaSource;nimport org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;nimport org.apache.flink.streaming.api.CheckpointingMode;nimport org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;nimport org.apache.flink.streaming.api.environment.CheckpointConfig;nimport org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;nimport org.apache.flink.table.api.DataTypes;nimport org.apache.flink.table.api.Schema;nimport org.apache.flink.table.api.bridge.java.StreamTableEnvironment;nimport org.apache.flink.types.Row;nimport org.slf4j.Logger;nimport org.slf4j.LoggerFactory;nnimport java.util.Properties;nn/**n * @Author zhangjinken * @Create 2023/12/25 17:02n * @Description 将银河PB格式日志写入到Paimonn * @Wiki -n * @Modifier -n * @ModificationTime -n * @Node -n */nnpublic class GalaxyToPaimonJob {n    private static final Logger LOG = LoggerFactory.getLogger(GalaxyToPaimonJob.class);n    private static final String GROUP_ID = "job.GalaxyToPaimonJob";nn    public static void main(String[] args) {n        try {n            ParameterTool tool = ParameterTool.fromArgs(args);n            int source = tool.getInt("source");n            int flatmap = tool.getInt("flatmap");nn            // Kafka consumern			Properties galaxyPro = new Properties();n			properties.setProperty("bootstrap.servers", bootstrap_servers);n			properties.setProperty("group.id", groupId);n			// 自动检测topic分区变化时间间隔n			properties.put("flink.partition-discovery.interval-millis", "60000");n			properties.put("refresh.leader.backoff.ms", 6000);n	n            KafkaSource<ByteString> galaxyKafkaSource = KafkaSource.<ByteString>builder().setTopics(PropertyUtil.get("user_event_etl_topic")).setValueOnlyDeserializer(new ByteStringSchema()).setProperties(galaxyPro).setStartingOffsets(OffsetsInitializer.latest()).build();nn            /** 1、 创建flink流式执行环境 */n            final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();n            env.enableCheckpointing(120000L, CheckpointingMode.EXACTLY_ONCE);n            env.getCheckpointConfig().setMinPauseBetweenCheckpoints(180000L);n            env.getCheckpointConfig().setExternalizedCheckpointCleanup(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);n            env.getConfig().setAutoWatermarkInterval(0);n            env.getConfig().setRestartStrategy(RestartStrategies.fixedDelayRestart(200, 60000 * 2L));n            env.setParallelism(32);n            /** 2、 添加 用户+事件 Source 源 */n            SingleOutputStreamOperator<Row> rsoso = env.fromSource(galaxyKafkaSource, WatermarkStrategy.noWatermarks(), "GalaxyToPaimonSource")n                    .uid("GalaxyToPaimonSource_Uid")n                    .name("GalaxyToPaimonSource_Name")n                    .setParallelism(source)n			/** 3、 简单取出字段,下发GalaxyEntity对象 */n					.flatMap(new GalaxyToPaimonFlatMap())n					.uid("GalaxyToPaimonFlatMapFunction_Uid")n					.name("GalaxyToPaimonFlatMapFunction_Name")n					.setParallelism(flatmap)n					.returns(Types.ROW_NAMED(n							new String[]{"realtime", "ip", "session_id", "app_id", "device_uuid""day", "hour"},n							Types.STRING, Types.STRING, Types.STRING, Types.STRING, Types.STRING, Types.STRING, Types.STRING));nn            /** 4、创建flink table执行环境 */n            StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);n            Schema schema = Schema.newBuilder()n                    .column("realtime", DataTypes.STRING())n                    .column("ip", DataTypes.STRING())n                    .column("session_id", DataTypes.STRING())n                    .column("app_id", DataTypes.STRING())n                    .column("device_uuid", DataTypes.STRING())n                    .column("day", DataTypes.STRING())n                    .column("hour", DataTypes.STRING())n                    .build();nn            /** 5、创建 Paimon catalog */n            tableEnv.executeSql("CREATE CATALOG paimon_hive WITH ('type' = 'paimon', 'warehouse'='hdfs://xxxxx/paimon')");n            tableEnv.executeSql("USE CATALOG paimon_hive");nn            /** 6、将流表注册为一个临时视图 */n            tableEnv.createTemporaryView("odm_event_realtime_view", rsoso, schema);nn            /** 7、将数据插入到 Paimon 表中 */n            tableEnv.executeSql("INSERT INTO paimon.odm_event_realtime SELECT * FROM odm_event_realtime_view");n            env.execute("job.GalaxyToPaimonJob");n        } catch (Exception e) {n            LOG.error("GalaxyToPaimonJob启动失败!", e);n        }n    }n}

Function类

package function;nnimport com.google.protobuf.ByteString;nimport org.apache.flink.api.common.functions.RichFlatMapFunction;nimport org.apache.flink.types.Row;nimport org.apache.flink.util.Collector;nimport org.slf4j.Logger;nimport org.slf4j.LoggerFactory;nnimport java.time.LocalDateTime;nimport java.time.format.DateTimeFormatter;nnpublic class GalaxyToPaimonFlatMap extends RichFlatMapFunction<ByteString, Row> {n    private static final Logger log = LoggerFactory.getLogger(GalaxyToPaimonFlatMap.class);n    private static final DateTimeFormatter inputDateFormat = DateTimeFormatter.ofPattern("yyyy/MM/dd HH:mm:ss");n    private static final DateTimeFormatter outputDateFormat = DateTimeFormatter.ofPattern("yyyyMMdd");n    private static final DateTimeFormatter outputHourFormat = DateTimeFormatter.ofPattern("yyyyMMddHH");nn    @Overriden    public void flatMap(ByteString bytes, Collector<Row> out) {n        try {n            // 创建结果Rown            Row row = new Row(86);nn            // 使用myProtoBufObj对象依次赋值n            myProtoBufObjDataToProtoBuf.myProtoBufObj myProtoBufObj = myProtoBufObjDataToProtoBuf.myProtoBufObj.parseFrom(bytes);n            String realtime = myProtoBufObj.getRealtime();n            row.setField(0, realtime);n            row.setField(1, myProtoBufObj.getIp());n            row.setField(2, myProtoBufObj.getSessionId());n            row.setField(3, myProtoBufObj.getAppId());n            row.setField(4, myProtoBufObj.getDeviceUuid());n            row.setField(5, LocalDateTime.parse(realtime, inputDateFormat).format(outputDateFormat));n            row.setField(6, LocalDateTime.parse(realtime, inputDateFormat).format(outputHourFormat));nn            // 将 Row 对象输出n            out.collect(row);n        } catch (Exception e) {n            log.error("function.GalaxyToPaimonFlatMap error is:  ", e);n        }n    }n}
最后更新于 2023-12-27